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The cohomology ring of the title is the Borel equivariant cohomology ring
H*(EGx® X,Z/pZ) of a G-space X with Z/pZ coefficients (p is a fixed prime).
Here, G is a compact Lie group and EG — BG is a classifying bundle for principal
G-bundies; EG x° X is the orbit space of EG x X under the diagonal action of G.
We refer the reader to [4] for the assumptions we make on X, and for a list of the
properties of H&(X) that we use in this paper.

The main result of this paper is Theorem 3.1 which states that the associated
primes of H&(X) are invariant under the Steenrod operations; actually it is
somewhat stronger and shows that the associated primes are all p-toral, i.e., they
can be obtained by restricting the cohomology ring H¢ (X) to the cohomology ring
of a p-torus (a product of cyclic groups of order p).

An application to the cohomology of groups is given in Section 4.

1. A comparison theorem

Suppose that G is a compact Lie group acting on the left on a space M. Fix an
embedding of G as a closed subgroup of another compact Lie group U. Let S be
a closed subgroup of U. One has three spaces associated with this data:

(i) the S-space G/Mx U — G/Mx U is the orbit space of the action (m, u)~
(gm, gu) of G on Mx U, and the S-action is given by G(m,u)— G(m, us™ .

(ii) the GxS-space MxU — the GxS action is given by (g s)mu)=
(gm, gus™").

(iii) the G-space M x U/S — U/S is the orbit space of the action u--us—' of S on
U; the G-action is given by (m, us)— (gm,gus™").

We see that the orbit spaces (G/(Mx U))/S,(Mx U)/(G xS), and (Mx U/S)/G
are all homeomorphic, we denote this common orbit space by G/(M x U)/S. Denote
the orbit projections by ng, mg.s and ns, respectively.

There are equivariant maps

(S, G/(MxU))

(GxS,MxU) (G,MxU/S)
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where 65 = (prs, 06), 0= (DPrg,idy X 0s). (prs and prg are projections and gg, Qs
are orbit space projections.)

If X, Y and Z are open or closed invariant subspaces of G/(M x U), Mx U, and
Mx U/S, respectively, such that 65'(X)=Y=6g'(Z) then n5(X)=ng,s(Y)=
ng(Z) in G/(MxU)/S; also, we have ng(X)=X/S, ngxs(Y)=Y/(GXS) and
n;(Z)=Z/G (i.e. all the various topologies hLere that one can compare are
identical).

Proposition 1.1. The maps 0s, Og induce ring isomorphisms on equivariant
cohomology

HE s(MxU)—;
G

=

05

H{G/(Mx U)) HXMx U/S)

(here the cohomology may have coefficients in any fixed commutative ring). More
generally, if X, Y, Z are open or closed invariant subspaces of G/(Mx U}, Mx U
and Mx U/S, respectively, such that 05'(X)=Y =05 (Z) then there are isomor-
phisms of equivariant cohomology rings

HIX) gy He s (V) = s - HE2),

Proof. There are various ways to prove this. We use Leray spectrai scquences, and
prove the more general statement.
One has a commutative diagram

(EGXES)X“*%Y -

ESx*X

EGx“Z

0(} /
N .
GxS / s

W=X/S=Y/(Gx8)=2/GCG/MxU)/S

S

It should be clear what the maps are.

One gets homomorphisms of the Leray spectral sequences associated to g,
TGvsy Mgt

= HY (W, #{)= H{ '(X)

o2

T=H( AG. )= HGS(Y)

*
oG

Y= HV, 28 = HE(2)
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Here, ;WQ’ (O=G, S or GxS8) is the sheaf on W associated to the presheaf on
W:V—Hj(ng' (V).
The stalks of . are 3, . = Hy(ng'(¢)) = Hp, where &=G(m,u)Se W and

Semuw={s€S|Gmus")y=Gimu)}, Q=S,
Q= (GxS)(,,,,,,)={(g,s)|gus"=u,gm=m}, 0=GxS,
Gmus)= €€ G | guS=uS,gm=m}, 0=0G.

Since there are isomorphisms

=

n

(G X S)(m. u)

SG(m. u) G(m. uS)

Prs Prg

the sheaves . for Q=G, S or GxS, are all isomorphic; this means that the E,
terms, and hence the abutments, of the three spectral sequences are isomorphic. [

In principle, this proposition allows one to specialize from general group actions
to toral actions. We make use of this specialization in the following two sections.

For later use, we note that the isomorphism of the proposition is an isomorphism
of modules over the Steenrod algebra.

2. The p-iw..k filtration

In this section we assume that G acts smoothly on a differentiable manifold M,
and that p is either a fixed prime or is zero.! If p>0 and H is an closed subgroup
of G, define the p-rank of H, rk, H, as the maximum rank of a p-torus in H. If
p=0, define rky A as the maximum rank of a 0-torus ir the connected component
of the identity H, in H.

If r is the p-rank of G, then there is a filtration of M, the p-rank filtration,

M=My=M,z---2M,=2M,, =0,

defined by M,={xeM Irkp G.=i}. These subspaces are invariant (since Gy, =
hG.h™! for he G). They are also closed: any x € M has an open neighborhood U
such that G, is subconjugate to G, for every u e U; thus rk, G, <rk, G, for every
ueU.

Thus there is a filtration

0=F,,<F,<s---<F,sFy=H&M)
defined by F; =ker(H&(M)— H(M — M,)). Call this 1utration the p-rank filtration
on HE(M).
We define subspace M,;, of M by M;,={xe X |rk,G,=i}.

VIf p=0, we assume that the cohomology ring has rational coefficients.
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Proposition 2.1. If all of the isotropy groups G, of the G-action on M are p-tori,
and if they fall into a finite number of conjugacy classes then M,;, is a smooth
closed G-invariant submanifold of M— M, |, for i=0,1,...,n.

Proof. The proof is elementary; we give it to make clear exactly why all the various
hypotheses are needed.

In any case M,;, is G-invariant and closed in M~ M;,, since M;,=M;-M; =
MNM-M,, ).

Let S;={[G,] |rkp G.=i} for each i. (Here, [H] denotes the conjugacy class of
the subgroup H.)

We ciaim that

M,=J GM-M, D ()

GG
and that this union is disjoint. In the equation (*),
GM-M,, ) ={gx|xeM-M,, )", geG}.

We assume p<0. The proof for p=0 is similar.

Let xeM,,. Then [G,]€S;, and certainly xe G(M-M,, ). On the other
hand, if xe GI(M-M,, )" where [H]€S,, then x=gz, ze (M-M,, ), geG.
Thus rk,G, </ and H=<G., so i=rk,id=<rk,G. =i, so rk, G =i. Sirce G,=
eG.g " rk,G, =1, so xe M. Thus equality holds in (). (Note that we did not
nced any hypotheses abcut the isotropy groups here.)

Now. for disjointness, assume that xe G\MM-M,, D NGM - M., )X, where
[H]. [K]€S, and [H]#{K]. Then x=gz=g'z’ where ze(M—-M,, )" and z'€
(M-M,. )" and g,g’eG. Thus, H<G,, K<G. and G,=gG.g '=g'G.(g") "
Let I'=¢gHg ', g’K(g’)" 'Y< G, be the subgroup generated by gHg ' and g’K(g’) .
We claim rk, /" >i, contradicting rk, G, =i; since [H]#[K], gHg '#g'K(g")".
Thus there is an element & in, say gHg ™', not in g’K(g’)"'. It is at this point that
we require that all isotropy be p-toral. For, since gGg ! is p-toral, & is of order p,
and commutes with g’K(g’) '. So (g’K(g’) ', &), the subgroup of I" generated by
¢'K(g’) ' and ¢ must have p-rank strictly greater than the p-rank of g'K(g’) "',
which is equal to /. Thus the claim about equation (*) is proved.

Now, if [H]€S,, then GV —M,, ;) is the set of points in M~ M, on orbits
of type G/H (i.e., the pcints whose isotropy groups are conjugate to H), so it is
a smooth submanifold of M- M, (see, e.g., [2]). Since M,;, is a finite (here,
finiteness of S, is used) disjoint union of submanifolds, it, too, is a
submanifold.

We return to the notation of Section 1, i.e., G and S are closed subgroups of some
large compact Lie group U. We also assuine that p>0.
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Consider the maps

G/(MxU)

MxU
s 06

MxU/S

MS MU MG

(Note that MS, MU and MG are all smooth S, GxS and G (respectively)
manifolds.)
Since the isotropy groups

SG(m. u) (G xS )(m, u) = G(m. uS)

=

are isomorphic for (m,u) e M x U, we see that (using the notation of Section 2)

) 65'(G/M x U)))=(Mx U);=05' (M x U/S);)

so also
05" (MS ~ MS;) = MU - MU, = 6;' (MG - MG))
and
(ii) 05" (MS;;)) = MU, = 05" (MG;)).

Proposition 2.2. If F.(S), F.(GxS) and F.(G) denote the p-rank filtrations on
HEMS), H s(MU) and HE(MG), respectively, then

83 Y(F(GxS)=F.(S) and 6% '(F.(GxS))=F.(G).

Proof. One has for each i a commutative diagram

res

H{MS) ———— HJ{MS-MS))

63= 0=

~

H, s(MU) —=— H%. (MU - MU))
1. ~

05= 03=

res

HE(MG) - HEMG - MG)) O

Let us now assume that U is a unitary group and that § is the diagonal p-tcrus
of U. Then all isotropy groups of the G-action on M x U/S are p-toral [8] so that
MG, and MS;, are smooth submanifolds of MG- MG, and MS-MS, ,,
respectively (Proposition 2.1).

In fact, MS;, is an S-orientable submanifold of MS—MS,, (see, e.g., [4]). Thus
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one has an exact Gysin triangle

HS(MS - MS; . 1)

/

HEMS,;,) * H¥MS - MS))

We define a ‘fake’ Gysin map

b HEMG;))~ HE (MG - MG, )
to be
P=08"0 D 0% 10F.

Proposition 2.3. (Compare with Theorem 1 of [4].) If p is odd, and U, S are as in
the previous paragraph, then
(a) there is a fake exact Gyvsin triangle

HGMG - MG, . y)

o/ N
/

H(*;(MG(H) A

H{(MG - MG))

with &, injective, thus vielding

(b) F.(G)/F,, (G)=HA(MG,;,)

as k-modules.

Proof. Use the fake Gysin map above; the cohomology proposition and (i) and (ii)

above: and the results of [4]. !

Question. Is there always a rea/ Gysin map ®,? Or, in other words, is MG,
always a G-orientable submanifold of MG - MG, , ,?

3. Sieenrod operations and Ass(H(M))

In this section, all cohomology has coefficients in k =Z/pZ where p>0. As in
Section 2, we assume that M and the action of G on M are smooth. Imbed G in
a unitary group U, and let S be the diagonal p-torus of U. Let

H‘?(/VI), p Odd,

H-A/I:
(M) {Hé(M), p=2.
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H{(M) and Hg(M) are algebras over the commutative ring Hg(pt)=Hg. If
H*(M) is finitely generated over Z/pZ (as a module), then HE(M) and H;(M) are
finitely generated as modules over H (5], [9]; we assume this from now on. In this
case, in fact, since Hg is a noetherian ring, so are H3(M) and Hg(M) [5), [9].

In general, if R is a Noetherian ring and L’ is an R-module, one defines Assz E
to be the set of primes p in R such that E contains a submodule isomorphic with
R/p. We denote Assiy R simply by Ass R.

Theorem 3.1. If p is odd, then the prime ideals in Ass(H;(M)) are invariant under
the Steenrod p-th power operaiions.

Proof. We may assume that G is a p-torus by the following argument.

Section ! gives an isomorphism Hg;(MG)= Hg(MS). This isomorphism is
induced by maps at the space level, so it is an isomorphism of rings and of modules
over the Steenrod algebra.

Assuming that the theorem is true for p-tori, we see that the primes in
Ass(Hg(MS)) are invariant under the Steenrod operations. So the primes in
Ass(Hg(MG)) are invariant under the Steenrod operations.

Quillen [8] shows that there is an injection H;(M)—H;(MG) (induced by the
projection M x v/s-2 M) making H;(MG) into a free, and hence faithfully flat,
extension of H;(M). Thus (see, e.g., [7]),

{pr* '(p) | pe Ass H;(MG)} = Ass H;(M).

Since pr* respects the Steenrod operations, we see that the primes in Ass H;(M)
are invariant under the Steenrod operations.

So, we now assume that G=A is a p-torus of rank n. Let F be the p-rank filtra-
tion of H,(M). Proposition 2.3 (or Theorem ! of [4]) shows that
Fi/F;,. 1= H,(M,;) as k-modules for each i. It is necessary to point out that this is
actually an isomorphism of H,(M)-modules. Here, H,(M,;) is considered as an
H (M)-module via restriction, and F, is considered as an H,(M)-module via
restriction also.

res

0 ‘F,‘ ’HA(M) HA(AJ“M,') —0

N 4
H, (M)

To see thai one has an H, (M)-isomorphism, we note that the k-isomorphism
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results from the following commutative diagram with exact rows and columns (see
[4]):

0 *Fioy *F; > £/Fiyy —0
i
H4(M) H,(M)
o, ?

0O—H M) —H,M-M,,)) —H,M-M)—0

Here &, is the Gysin map associated with the embedding M,;, ~M - M,, ,. One has
that @ s(res&-n)=¢&- D 4(n) for £ in H (M- M, ,); thus, by transitivity of restric-
tion we see that &, respects the H,(M)-module structure on H,(M). (One
should point that &, is really defined from HY(M,,)~H;i(M-M,, ), not from
H 4(M;)), but one knows that the Gysin map, while not respecting degree, respects
parity in this case (again see [4] for details).) Certainly all the other maps respect
the H,(M)-module structure, so the desired result follows.
Therefore (see, e.g., (7],

Ass H (M) € | Assyy ) (Fi/Fi i) = U Assy oanHa(M).

We calculate ASS,]I(.\”HJ(AI(”). Since M(i)ZUB(M—Mi+|)B (sce Section 2), we
write

H,(M;;)) = C‘? H,(M~-M;, )"

where B runs over the subtori B of A of rank i. This equality, of course, preserves
the H ,(M)-module structure.

Let {c} be the set of connected components of (M-M,,,)® and let
‘= {5‘=UUF,4 ac} be the set of ‘A-invariant components’ of (M —M,, )? (this set
is finite; see, e.g., Lemma 2 of [4]). Then H (M- M, )®)=®, H,(?), so finally
we have

Assgy,oanH (M) =g Assy o H (M -M,;, l)B)zle U Assy, o H.4 (0.

The point of all this is that one knows exactly what Assy oy H4(€) is. Namely,

AsS g o (H 40 = {vi5 )}
where

PBr= ker(H 4 (M)"HR(N)/\[G)

and pte I” - the component of M5 containing ¢ (we adopt the notation of [8], Part
I).



The associated primes of H3(X) 139

How does one see this? First, there is only one minimal prime of H,(¢): the
prime pg = ker(H 4(&)— Hg(pt)/V0) (where pt is any point in ¢&). This follows from
Quillen’s characterization of the minimai primes of an equivariant cohomology ring
[8] since

(i) ¢is a space with only one isotropy group B with respect to the A-action, and

(ii) ¢ has a transitive A-action on its components.

Second, there are no embedded associated primes in H4(¢) since H,(C) is
‘CohenMacaulay’ — this follows from [3] since ¢ also satisfies ¢®=¢. Thus
Ass H,(¢)={vg}, pg as above.

It is not hard to see (see, e.g., [7]) that this means that Assy, ) H(¢)=
{6 '(pg)} where 0: H,(M)—H ,(¢) is the restriction map defining H,(¢) as an
H ,(M)-module. Now, 8~ '(pg) =ps 1 clearly,

Assy. anHA©@ Sy S0 pp).

Also, J~!(pp) is minimal over Assy ) H 4(€) since it is the only associated prime.
All this shows that

Ass H, (M) C {p(B‘,-)|BgA, I is a component of M5},

But it is clear that the primes pg r, are all the invariant under the Steenrod opera-
tions, being defined by maps at the space level. [J]

Corollary 3.2. With the hypotheses of the above thecrem, the prime ideals _in
Ass H;(M) are all toral, i.e., they are of the form p g ., =ker(Hg(M )— Hyg(pt)/V0).
Here, pt ec where ¢ is a component of M B and B is a p-torus in G.

Proof. One knows (e.g., see [7]) that all associated primes are graded, and by the
theorem, they are invariant under the Steenrod onerations. Thus, by ;8] they are all
toral. [J

We | »int out that the results of [8], Part I, alone show that the minimal primes
are invariant under the Sieenrod operations (since they are all toral). The point of
the theorem is that the embedded primes are toral, too. Also, the corollary could
be deduced (without appealing to the results of [8]) by the proof of the theorem.

Remarks. (i) The results of this section should be true for p=2 as well. We assume
p#2 because the results in [4] that the proof of the theorem depend on are given
only for p+2.

(ii) Theorem 3.1 can be restated in the following form.

Theorem 3.3. Let G and M be as in Theorem 3.2. Let 7 : Hg(M)— Hg(M)|t] be
the map given by the Steenrod operations, i.e.,

oo

2(r)=Y 2Nt

i=0
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where re H;(M). Then v is a nondegenerate homom:orphism of noetherian rings.
(For definition of nondegenerate homomorphism, sez [7].)

Now, every flat homomorphism of (noetherian) rings is nondegenerate [7]
(although the converse is not true in general). A question here is: “‘Is # flat?”’
In the case where G=A is a p-torus, and M =pt is a point, the map

R4

H /N0 H A0, KXy ey X ——— kDX, s X, ]10]

(where deg x; =2) is given by
2(x;) =x, +xP(1).

This map is smooth (and hence flat).

(iii) We note that Theorem 3.2 implies that if ae H;(M) is a zero-divisor then
#'(a) is also a zero-divisor for every i=0 (although this fact should be proved in
a more straightforward manner without using the methods of Theorem 3.2).

4. An application to the cohomology of groups

Let G be a finite gioup; all other notation is carried over from the pievious sec-
tions. Let 4 be a p-torus, and let reg A be the regular representation (coinplex) of
A. The Chern class c;(reg A) lies in Hjj =H_§’(pt) (where pt is a one-point space)
for j=1,2,..., p" where the order of A is p". One knows that

(i) ¢j(reg A)=0 unless j=p”-—pi, i=0,1,...,n—-1;

(i) cpr_(reg A), c,n_p(reg A),...,cpn,n (reg A) generate a polynomial subring
of H,; and

(iii) if B is a nontrivial subgroup of 4 of index p"~' then

resg(Cyr_ pn ((reg A))=cp y (reg B)"" '
(see, e.g., [8], Part II).

Theorem 4.1. If H;=H;(pt) and p||G
that depth H; = 1.

, then there is a non-zero-divisor in Hg so

Proof. The set of zero-divisors in H; is equal to the union of the associated primes
of H. [6]. By the main theorem, these associated primes are all toral. Then there
exists an element y of H; whose restriction to H, for every p-torus A in G is not
zero (thus y can’t be in any toral prime, so y can’t be a zero-divisor in G). One sees
this as follows: for ea:h p-torus A in G, let

Ya= [Cpll\,rl i (reg A)]pd e

i
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where d=dim H; =max{rk A IA is a p-torus in G}. Then if B is subconjugate to
A, one sees that the map H ,— Hpgtakes y4 to yz. Thus by Corollary 2.6 of [1], une
has an element y and a power g of p such that

res, () =y

for every p-torus A in G. Certainly y9 is not zero in H4 so y is not in any toral
prime. Hence y is not a zero-divisor in Hg. [
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